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Abstract—Always-on sensors continuously monitor the envi-
ronment for certain events. Such sensors are often integrated on
battery-powered devices, e.g., home automation devices or virtual
assistants, which require power-efficient classification pipelines.
However, conventional classification pipelines that digitize the
analog signals at Nyquist rate followed by digital feature extrac-
tion and classification are wasteful in a sense that the “feature
rate” is generally much smaller than the Nyquist rate. In this
paper, we propose a novel classification pipeline called analog-to-
feature (A2F) conversion that directly acquires features in the
analog domain using non-uniform wavelet sampling (NUWS).
Our approach effectively combines Nyquist-rate sampling and
digital feature extraction, which has the potential to significantly
reduce the power and costs of signal classification. We demon-
strate the efficacy of our approach for the detection of audio
events and show that NUWS-based A2F conversion is able to
outperform existing methods that use compressive sensing.

I. INTRODUCTION

In a growing number of applications and devices, always-
on sensors continuously monitor the environment to detect
certain events even if the rest of the device is in sleep
mode. A prominent task of such sensors is audio-event
classification (or detection), which finds use in, for example,
smart phones or virtual assistants to wake-up the device by a
voice command or to detect audio events (e.g., a certain home
appliance is used) [1]. Audio-event classification is traditionally
implemented using a pipeline shown in Fig. 1(a), in which
an analog front-end (AFE) filters and amplifies the analog
signal that is sampled using a Nyquist-rate analog-to-digital
converter (ADC) followed by a digital feature extractor and a
classifier [2]. As it has been noted in [3], [4], however, accurate
signal classification does not require sampling at the Nyquist
rate. In fact, digital feature extractors often generate far fewer
features than the number of Nyquist samples, which indicates
that traditional signal classification pipelines are wasteful in
terms of power, cost, and the acquired amount of data.

A prominent way of reducing the sampling power, costs,
and data rates is to use compressive sensing (CS) [5]. CS
acquires fewer measurements than the Nyquist-rate suggests
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and O. Castañeda for fruitful discussions on NUWS based signal classification.

DigitalAnalog

Fig. 1: (a) Illustration of a conventional signal classification
pipeline that performs Nyquist sampling, extracts features in the
digital domain, and performs classification. (b) The proposed
analog-to-feature (A2F) conversion pipeline directly acquires
features in the analog domain which effectively combines
Nyquist sampling and feature extraction.

while still enabling faithful signal recovery as long as the
signals are sparse in a given transform basis. To implement CS
in practice, numerous acquisition schemes have been proposed
in the past, including non-uniform sampling (NUS) [6] and
random modulation (RM) [7], [8]. While one can directly
perform signal classification from CS measurements [3], CS
is designed for signal recovery and not for classification tasks,
and suffers from noise folding and high dynamic range [9].

A. Contributions

In order to perform signal classification at sub-Nyquist rates,
we propose a novel pipeline called analog-to-feature (A2F)
conversion that directly acquires a small set of features in the
analog domain followed by a digital classifier; see Fig. 1(b) for
an illustration. In contrast to CS, A2F conversion is specifically
designed for signal classification, which further reduces the
sampling rates, costs, and power. Instead of acquiring a random
subset of Nyquist samples, as it is the case for NUS [10], we
extract a carefully-selected set of “wavelet features” directly
from the analog signal using non-uniform wavelet sampling
(NUWS) [11]. These features are then fed into a digital
classifier (e.g., a neural network) that detects the events of
interest. To identify a small set of features that maximizes the
classification accuracy, we propose an algorithm that jointly
optimizes the wavelet features and the classifier. To demonstrate
the effectiveness of NUWS-based A2F conversion, we perform
audio-event classification using a real-world dataset and show
that our approach outperforms existing CS-based methods, such
as NUS and RM, in terms of classification accuracy.
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B. Notation

Lowercase boldface letters denote column vectors; uppercase
boldface letters denote matrices. For a matrix A, Ak,j refers
to the entry on the kth row and jth column, and AH denotes
the Hermitian conjugate. For a vector a, ak refers to the kth
entry, ‖a‖2 =

√∑
k |ak|2 to the `2-norm, and <(a) and =(a)

to the real and imaginary part, respectively.

II. ANALOG-TO-FEATURE (A2F) CONVERSION VIA
NON-UNIFORM WAVELET SAMPLING (NUWS)

We start by reviewing basics of CS, and briefly discuss NUS
and RM. We then detail NUWS-based A2F conversion.

A. Basics of Compressive Sensing (CS)

CS samples signals at sub-Nyquist rates while still enabling
faithful signal recovery [5]. Let x ∈ RN be the N -dimensional
signal to be acquired with x = Ψs, where s ∈ RN the sparse
representation (i.e., only a few entries carry most of the signal’s
energy) of x and Ψ is a unitary matrix that sparsifies x. Then,
CS samples the signal x as follows:

y = Φx + n. (1)

Here, the vector y ∈ RM contains the CS measurements,
Φ ∈ RM×N is a carefully designed sampling matrix with
M < N , and n ∈ RM models measurement noise. If the
signal x of interest has a sufficiently sparse representation s
and if the effective sampling matrix A = ΦΨ ∈ RM×N (so
that y = As + n) satisfies certain incoherence conditions, then
one can faithfully recover the sparse representation s (and,
hence, the signal of interest x = Ψs) from y with fewer
measurements M than the signal’s ambient dimension N [5].

B. Non-Uniform Sampling (NUS)

NUS is among the simplest CS methods and acquires a
small subset of the Nyquist samples [10]. Mathematically, the
sampling matrix is Φ = RΩ, whereRΩ = [IN ]Ω is the M×N -
dimensional restriction operator which consists of the subset Ω
with cardinality |Ω| = M of rows of the N × N identity
matrix IN . NUS is conceptually simple and enables efficient
hardware designs [12]. Furthermore, NUS is particularly well-
suited for signals that are sparse in the frequency domain, i.e.,
where the sparsity transform basis Ψ = FH is the N × N
inverse discrete Fourier transform (DFT) matrix [13].

C. Random Modulation (RM)

RM enables the acquisition of more general classes of
signals than NUS [7], [8]. Mathematically, the sampling
matrix Φ contains (pseudo-)random entries, e.g., i.i.d. Bernoulli
{−1,+1} or standard normal entries, and each compressive
measurement m = 1, . . . ,M corresponds to

ym = 〈φm,x〉+ nm, (2)

where φm denotes the mth row of Φ. Hence, RM acquires
(pseudo-)random inner products of the signal vector x which
can be implemented using a signal generator that produces the
entries of φm, an analog multiplier, and an integrator [8], [11].

ADCAFE ADC
features

Fig. 2: High-level overview of A2F conversion using NUWS:
An analog frontend (AFE) filters and amplifies the incoming
signal. An analog multiplier mixes the input signal with a
wavelet that can be tuned in time instant τ , center frequency f ,
and duration σ. An integrator computes the inner product and
the resulting wavelet feature is sampled by a low-rate ADC.

The key drawbacks of RM are as follows: (i) the random
sequence generator must still operate at Nyquist rate; (ii)
one requires M parallel sampling branches (so-called fingers)
to acquire M compressive measurements. Furthermore, RM
suffers from noise folding due to the wideband nature of the
(pseudo-)random sequences [9].

D. Non-Uniform Wavelet Sampling (NUWS)
NUS and RM, as well as other CS architectures (see [11]

and the references therein), are specifically designed for
signal recovery. Nevertheless, these methods can be used to
directly perform signal classification [3] from the compressive
measurements in y. To avoid the practical limitations of NUS
and RM while enabling further reductions in terms of the
measurements to be acquired for signal classification tasks, we
propose to use NUWS [11] for A2F conversion. In essence,
NUWS combines the advantages of NUS and RM by acquiring
inner products of the signal x as in (2) but with hardware-
friendly wavelet functions rather than Dirac delta functions (for
NUS) or (pseudo-)random sequences (for RM). The tunability
of the wavelet functions enables one to adapt the compressive
samples to the signal type and classification task, effectively
extracting features directly in the analog domain.

NUWS, as illustrated in Fig. 2, computes inner products as
in (2) between the analog signal and tunable wavelet functions
that can be efficiently generated in hardware [14]. As in [11],
we focus on Gabor-like wavelet functions defined as [15]

φτ,f,σ(t) = wσ(t− τ)ej2πf(t−τ), (3)

where t refers to continuous time, wσ(t) is a window function
(e.g., a rectangular or Gaussian window) centered at zero and
whose width is controlled by the parameter σ > 0, τ denotes
the location of the wavelet, and f > 0 determines the center
frequency. For simplicity, we discretize (3) and represent the
wavelet functions as N -dimensional vectors φτ,f,σ. In the
discrete domain, one can collect a finite set of L wavelet
vectors {φτ`,f`,σ`

}L`=1 with given location τ`, frequency f`,
and width στ for ` = 1, . . . , L, and assign each vector to a
column of the wavelet dictionary W ∈ CN×L. NUWS signal
acquisition can then be represented in compact form as

y = RΩWHx + n,
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where the restriction operator RΩ = [IL]Ω selects the subset Ω
with cardinality |Ω| = M of wavelets from the wavelet
dictionary W. Intuitively, NUWS first expands the signal x in
the (overcomplete) wavelet frame WHx followed by selecting
a subset of the coefficients indexed by Ω. The acquired (noisy)
wavelet coefficients collected in y, which we call wavelet
features, are then fed directly to a digital classifier.

It is important to realize that each (noiseless) wavelet feature
ỹ` = 〈φτ`,f`,σ`

,x〉 represents a certain portion of the frequency
spectrum of the signal x to be classified, where τ determines
the phase, f the center frequency, and 1/σ the bandwidth to be
extracted. Evidently, by carefully selecting the set of wavelet
vectors φτ`,f`,σ`

, ` = 1, . . . , L, one can extract the spectral
components that are relevant for signal classification.

III. JOINT FEATURE SELECTION AND CLASSIFIER DESIGN

The classification performance of A2F conversion is deter-
mined by the features and the classifier. Acquiring a large
number of features will improve classification performance
but also negatively affect the power consumption and feature
rates. In general, the key goal of A2F conversion is to identify
the smallest set of relevant features that yields acceptable
classification performance. For NUWS-based A2F conversion,
this problem boils down to (i) constructing a suitable wavelet
dictionary W, (ii) selecting a small set Ω of wavelet functions,
and (iii) designing a digital classifier. In what follows, we
separate step (i) from (ii) and (iii), i.e., we first construct W
and then, jointly select features and design the classifier.

A. Construction of Wavelet Dictionary

We consider rectangular window functions of width N , N/2,
N/4, and N/8 samples, and we construct the wavelet dictionary
by taking inverse DFTs of dimension N , N/2, N/4, and N/8
with non-overlapping windows on each scale. Concretely, our
base wavelet dictionary is compactly described as

W =
[

I1 ⊗ FHN , I2 ⊗ FHN/2 , I4 ⊗ FHN/4 , I8 ⊗ FHN/8

]
, (4)

where ⊗ denotes the Kronecker product. For the audio-event
classification task considered in Sec. IV, we have observed that
one does not require continuous wavelet functions. In particular,
NUWS-based A2F conversion can be carried out using simpler
functions with entries in {−1, 0,+1}, which enables one to
replace the analog multiplier in Fig. 2 with simple mixing (or
chopping) circuitry. Furthermore, we are interested in acquiring
real-valued wavelet features (the functions in (3) are complex-
valued). To this end, we first convert (4) into the real domain
followed by quantization of the entries to the set {−1, 0,+1}.
Specifically, we design our wavelet dictionary as

W =
[

sgn
(
<(W )

)
, sgn

(
=(W )

) ]
, (5)

where the sign operator sgn(A) is applied element-wise to
matrices, and sgn(A) = +1 if A > 0, sgn(A) = 0 if
A = 0, and sgn(A) = −1 if A < 0. Note that the wavelet
dictionary construction in (5) contains ternary-valued sequences
that are localized in time and roughly localized in frequency,
corresponding to the frequencies given by the inverse DFTs

of varying dimensions. Hence, the wavelet dictionary contains
vectors that span a broad range of frequencies, bandwidths,
and phases, from which a suitable subset can be selected.

B. Classifier Structure

For the audio event classification task considered in Sec. IV,
we observed that (artificial) neural networks (NNs) work best
with NUWS-based A2F conversion.1 Furthermore, NNs can
be implemented quite efficiently in hardware as they mainly
consist of matrix-vector multiplications [16]. To minimize the
complexity of the NN, we use a shallow network structure
with only two hidden layers, each having 200 neurons. We
use rectified linear units (ReLUs) as activation functions in the
hidden layers and a soft-max function in the output layer. We
use TensorFlow [17] and an NVIDIA Quadro P6000 GPU to
learn the weights of the NN.

C. Joint Feature Selection and Classifier Design

We next describe an algorithm that jointly selects a small
subset of wavelet features and learns the weights of the NN.
We use a selection wrapper method, which extracts the set
of features based on the performance of the classifier. More
specifically, we build our approach on the forward selection
wrapper method proposed in [18]. The basic steps are as follows.
Start with an empty set of features Ω = ∅. Train a classifier
for each of the ` = 1, . . . , L wavelet vectors in W and add the
feature index ˆ̀ to the feature set Ω← {Ω, ˆ̀} that yields the
highest classification accuracy. In subsequent steps, iterate over
the remaining features, i.e., {1, . . . , L} \ Ω and train a new
classifier together with the previously selected feature set Ω.
In words, sequentially add the next-best feature in every step
by retraining the classifier. This greedy procedure is repeated
until M features are selected. The generated set Ω contains an
ordered list of indices, in which the features selected early are
more important than those selected at later stages.

Unfortunately, if the number L of total features and the subset
|Ω| = M are both large, then the method summarized above
requires one to train C = LM − 1

2M(M − 1) classifiers. For
the situation considered in Sec. IV, where we use a wavelet
dictionary with L = 2048 vectors and select up to M =
32 features, this requires training of C = 65, 040 classifiers,
resulting in approximately 180 hours feature selection time
on the used GPU. To reduce the feature-selection time, we
propose to keep only the best α ∈ [0, 1] fraction features in
each iteration, i.e., we remove 1 − α features with lowest
classification accuracy. Note that we have to set α ≥ L

1
1−M

so that after M iterations we still have a sufficient number of
features to select from. By setting α = L

1
1−M , the number of

times a classifier must be trained reduces to

Ĉ =

⌈
L 1−L

M
1−M

1−L
1

1−M

⌉
,

where d·e denotes rounding towards infinity. For the above
example, the proposed strategy would reduce the number of

1We also evaluated random forests, which work well for binary classification
tasks but not for multi-class situations as considered in this paper.
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TABLE I: Ten audio events recorded with a Blue Yeti USB
microphone in three different home environments.

# Audio event # Audio event

1 Dryer, running 6 Sink, full stream center
2 Kettle, heating 7 Kitchen fan, low
3 Kitchen fan, high 8 Washing machine, running
4 Sink, fill large jug full stream 9 Shower, sprinkle
5 Washing machine, spin cycle 10 Washing machine, start

classifiers to be trained to Ĉ = 9, 390 or only 26 hours of
feature selection time, which is almost 7× faster. We note that
by selecting α slightly higher than L

1
1−M , the proposed feature

selection method only marginally degrades the classification
accuracy in our application compared to a full search.

IV. EXPERIMENTS

We now demonstrate the efficacy of NUWS-based A2F
conversion for an audio-event classification task. Due to the
lack of a publicly-available audio event dataset, we recorded
ten different audio events as listed in Tbl. I using a Blue
Yeti USB microphone (mono, omnidirectional mode, 48 kHz
sampling rate) in three different home environments.

A. Data Preparation and Augmentation

All of the following experiments are carried out in a
Python simulator with real audio data. We perform block-
wise processing of N = 256 audio samples and discard blocks
whose `2-norm is below a threshold of ‖x‖2 < 0.25. With
the remaining blocks, we perform data augmentation [19]
by randomly scaling (with a uniform distribution) the input
signals x so that their `2-norm is between 0.25 ≤ ‖s‖2 ≤ 1.25,
which emulates amplitude variations that may occur in practice.

B. Implementation Details

The remaining details of the classifier and feature selection
algorithm are as follows. 70% of the available audio data is
used for NN training; the rest is divided equally for validation
during training and for testing to extract the classification
accuracy. We select a subset of M = 32 features from a total
number of L = 2048 wavelet features (see Sec. III-A). We set
α = 0.9, which results in excellent feature quality and requires
us to train a total number of 19, 854 classifiers which takes
roughly 55 hours to identify the set of wavelet features.

In realistic situations, a specific audio event often spans
multiple signal blocks. This observation enables us to improve
the classification accuracy by considering the classifier outputs
over B consecutive blocks. Let P(Xj

b ) denote the probability of
class j in block b to be present. Assuming independence2, the
log-probability of class j being present after observing B blocks
is as follows: log(P(Xj)) =

∑B
b=1 log(P(Xj

b ). We then select
the most likely class as ĵ = arg maxj=1,...,J log(P(X̂j)),
where J represents the total number of classes.

2Neighboring blocks are clearly not independent. Nevertheless, we have
observed substantial improvements by taking this leap of faith.
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Fig. 3: Accuracy versus the number of features for NUWS-
based A2F conversion (red), RM (blue), and NUS (green). A2F
conversion outperforms CS-based methods and approaches the
Nyquist-rate reference performance for only M = 16 features.

C. Results
Figure 3 shows the classification accuracy versus the number

of selected features M for different classification pipelines.
Fig. 3(a) shows results for the first five events listed in Tbl. I
and Fig. 3(b) for all ten events listed in Tbl. I. As a baseline,
we include a classifier that always predicts the class with the
largest number of data points (called “baseline”). We also
include a reference classifier that applies a NN on all N = 256
Nyquist samples (called “reference”). The red curves show
the accuracy of NUWS-based A2F conversion, where we used
the feature selection algorithm proposed in Sec. III-C. The
green curves show the accuracy of NUS, where we used the
proposed feature selection algorithm to select the subset of
Nyquist samples. The blue curves show the accuracy of RM
where we used i.i.d. Bernoulli {+1,−1} measurements.

We observe that NUWS-based A2F conversion outperforms
both RM and NUS, especially for a small number of features
and for the ten-class experiment. For five and ten classes, A2F
conversion with B = 9 time slots is able to closely approach
the reference performance (the Nyquist-based classifier with
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Prediction
1 2 3 4 5

1 .139 .006 .004 .003 .016

A
ct

ua
l

ta
r g

et

2 .007 .185 .011 0 .009

3 0 .012 .201 0 .002

4 0 0 0 .203 0

5 .002 .002 .001 0 .195

(a) Five classes

Prediction
1 2 3 4 5 6 7 8 9 10

1 .087 .003 0 .007 .002 0 0 .005 .001 .002

2 .002 .110 .004 .005 0 0 0 .014 0 0

3 .002 .009 .108 .004 0 .003 0 .018 0 .02

A
ct

ua
l

ta
r g

et

4 .004 .002 .008 .035 0 0 0 .007 0 0

5 .001 0 0 0 .049 .002 .001 0 0 0

6 .001 0 0 0 .011 .079 .002 0 0 0

7 0 0 0 0 .03 .013 .116 0 0 .011

8 .001 0 .006 .009 0 0 0 .022 0 0

9 .003 .002 0 0 0 0 0 .004 .117 0

10 .001 0 .001 0 0 .002 .002 0 0 .049

(b) Ten classes

Fig. 4: Confusion matrices for NUWS-based A2F conversion
with M = 16 wavelet features and processing B = 9 blocks.

B = 9) with only M = 16 features, which is equivalent to a
compression of 16×. Furthermore, adding more features results
in diminishing returns as we observe a saturation behavior.

Figure 4 shows the confusion matrices for NUWS-based
A2F conversion with M = 16 wavelet features and joint
processing B = 9 blocks. While the five-class experiment is
not particularly challenging, the considered classifier struggles
to identify audio-event number 8 for the ten-class experiment.

V. CONCLUSION

In this paper, we have proposed a novel signal classification
pipeline which we call analog-to-feature (A2F) conversion. Our
approach relies on non-uniform wavelet sampling (NUWS)
which acquires spectral features directly in analog domain,
effectively combining sub-Nyquist sampling and digital feature
extraction. We have demonstrated our method on an audio-event
classification task with real data which reveals that NUWS-
based A2F conversion outperforms existing compressive sens-
ing (CS)-based methods in terms of classification accuracy
for the same number of measurements. Furthermore, we have
shown that for the considered classification task, 16× fewer

measurements than Nyquist samples are sufficient to approach
the performance of a traditional signal classification pipeline.

There are many avenues for future work. The design of a
circuit-level prototype of NUWS-based A2F conversion that
demonstrates the practical power savings is ongoing work. A
theoretical analysis that studies the performance of our approach
is an open research topic. Finally, applying A2F conversion to
other signals and applications, such as communication systems
and biomedical signals, is left for future work.
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